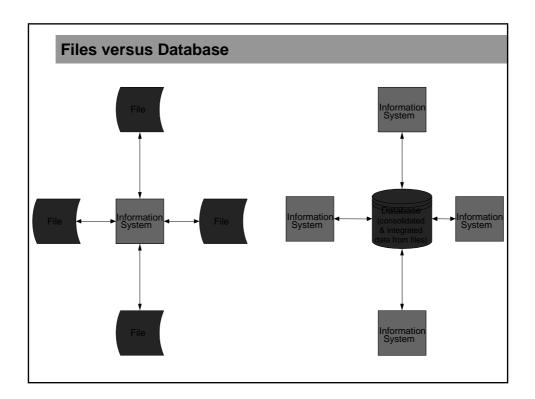


Files versus Database


There are two approaches to the storage of data in a computer system

- Store the data in individual files each unique to a particular application
- Storage of data in a computer-based system involves building a database

A file is a collection of similar records.

- Customer file, order file and product file

A **database** is a collection of interrelated files (meaning that records in one file are physically related to records in another file).

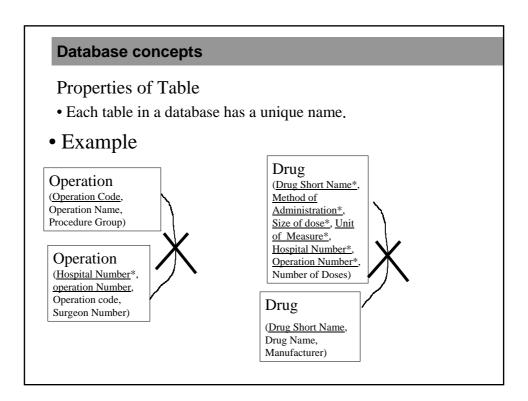
Problems with Conventional Files Harder to adapt to sharing across applications Harder to adapt to new requirements Need to duplicate attributes in several files. Somewhat slower performance Higher development costs Greater data vulnerability

Data base concepts

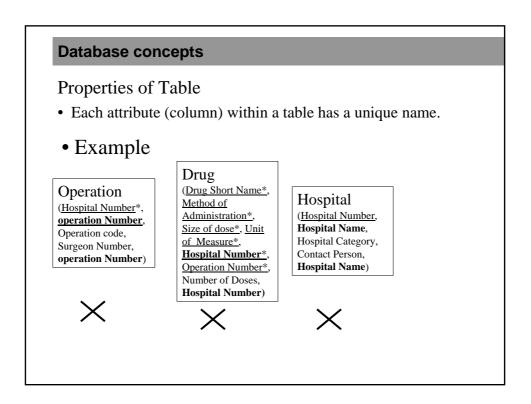
A **table** is the relational database equivalent of a file.

•A table is a named, two-dimentional arrays of data.

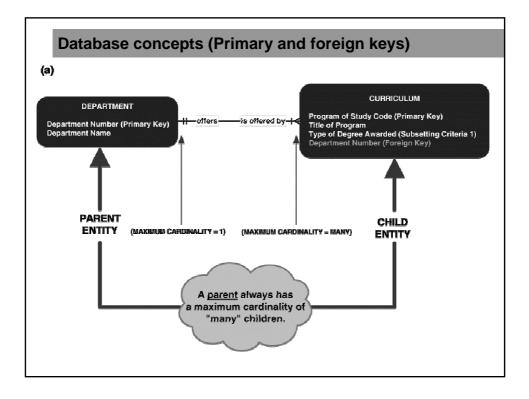
- Each table consists of a set of named columns.
- Each row of a table corresponds to a record that contains data Example

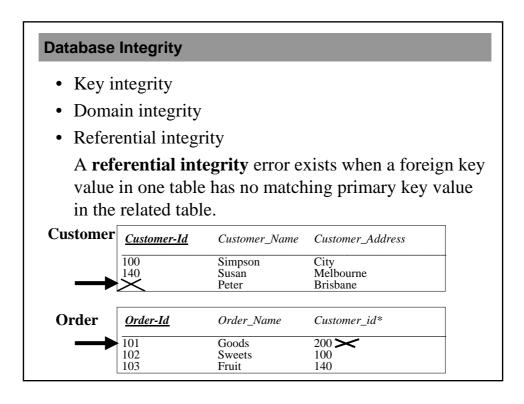

Customer

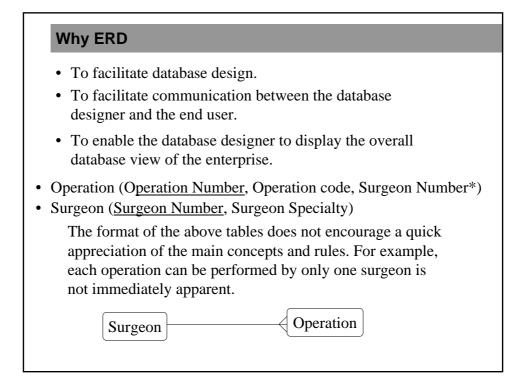
Customer_id	Name	Salesperson	Region
8038	Anderson	Smith	South
9167	Hobbs	Hicks	West
7927	Tucker	Smith	South

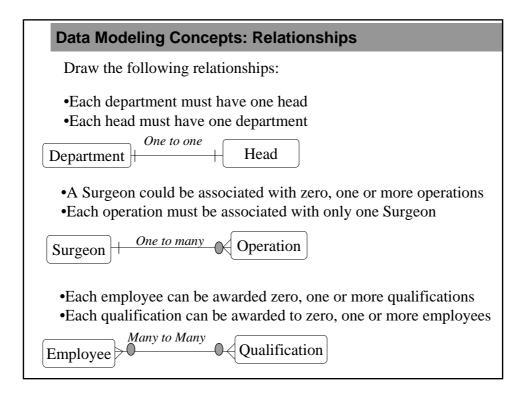

Data base concepts

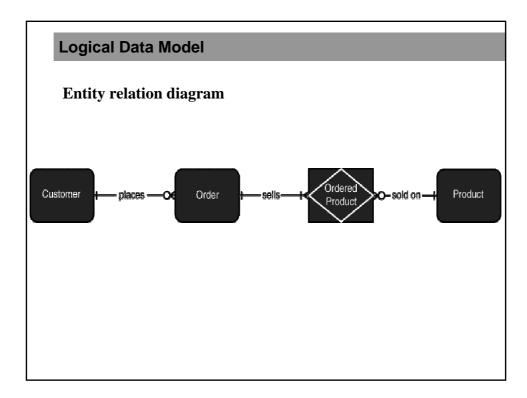
Properties of Table

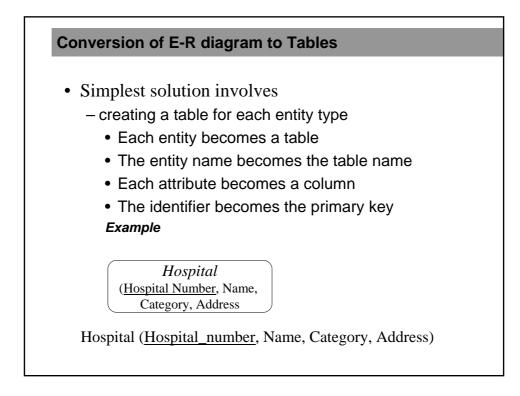

- Each table in a database has a unique name.
- Each row is unique; no two rows in a table are identical
- Each attribute (column) within a table has a unique name.
- The sequence of columns (left to right) is insignificant.
- The sequence of rows (top to bottom) is insignificant.

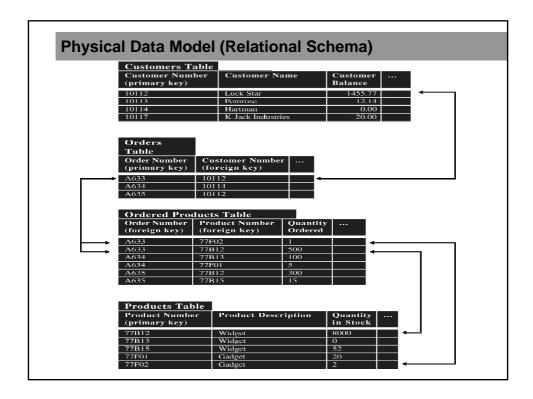

-	es of Tab w is unique		ws in a table are identical.
• Exam	ple		
Emp-Id	Name	Salary	Course_title
100	Simpson	48,000	C++ 7 V
100	Simpson	48,000	C^{++} \square
00	Simpson	48,000	Unix
40	Susan	42,000	Java
40	Susan	42,000	DBMS
	Susan	42,000	DBMS
.40			
40 40	Susan Susan	42,000 42,000	Java DBMS – 1 – 1


Database cor	ncepts			
identify – A foreig differen combina	ney are the data. ary key is a f one and only gn key is a p t file (A foreig ation of attrib nother entity collection of fi	smallest ield whose one recor- ointer to a on key is ar utes that is)	unit of values d in a file. record in a n attribute o the primary	r
A	Customer id	Name	Salesperson	Region
A record —	► 8038	Anderson	Smith	South
	9167	Hobbs	Hicks	West
	7927	Tucker	Smith	South

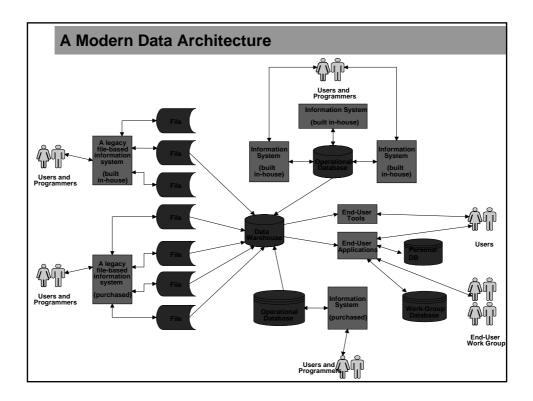

Database cor	ncepts (Pri	mary	and fore	eign ke	ys)
	Departmen number	t Dej Itar	oartment		
Department	101	Co	nputer		
	102	Ma	th		
	103	Phy	vsics	N	
	104	Ch	emistry	$1 \times$	
	101	Eng	gineering	1	
	/		<u> </u>	1	
	Program of study code	Title o progra	21	e of ree	Department number
	901	Scienc			101
Curriculum	902	Math	Mas	ster	102
	903	IT	Mas	ster	101
	904	IS	Mas	ster	101
	>>	Physic	s Mas	ster	
-					




Logical Data Model (Entity relationship model)
• An <i>entity</i> is something about which we want to store data. Examples: Student, University, Book, house etc
• An <i>attribute</i> is a descriptive property or characteristic of an entity. Examples: Student name, student address, student GPA.
• A relationship is a natural business association that exists between one or more entities. Relationships are important to identify and describe because they are the logical link between business functions. They can be interpreted in both directions between multiple entities. Example:


	A		C 1:
Cardinality Interpretation	Minimum Instances	Maximum Instances	Graphic Notation
Exactly one	1	1	
Zero or one	0	1	0+
One or more	1	Many	-+-
Zero, one or more	0	Many	0-
More than one	Greater than 1	Greater than 1	

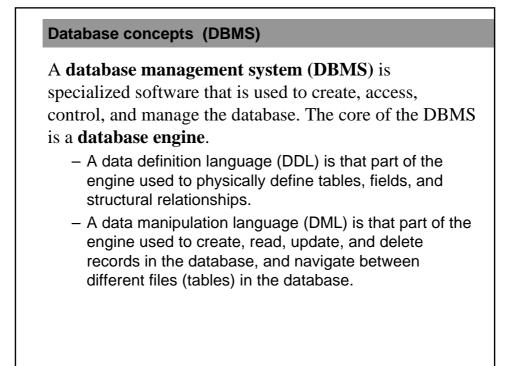
Customer	Customer (Customer id, Name, Addre
Customer_id	Customer id Name Address
Name	
Address	
Student	Student (<u>Student_id</u> , Name, address, em
Student_id	Student (<u>Student_id</u> , Name, address, em <u>Student_id</u> Name address email

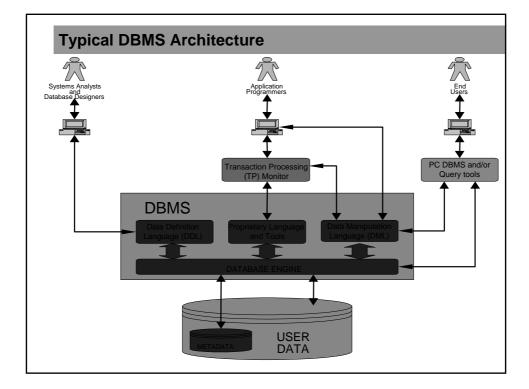


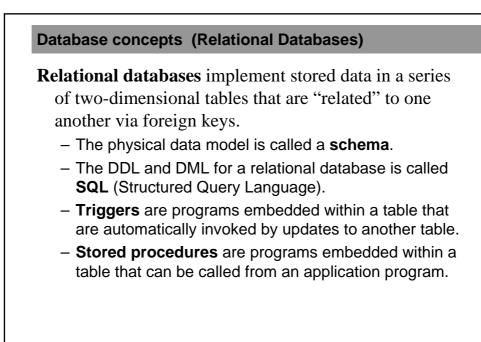
Database concepts (Data Architecture)

A business's **data architecture** defines how that business will develop and use files and databases to store all of the organization's data; the file and database technology to be used; and the administrative structure set up to manage the data resource.

Data is stored in some combination of:

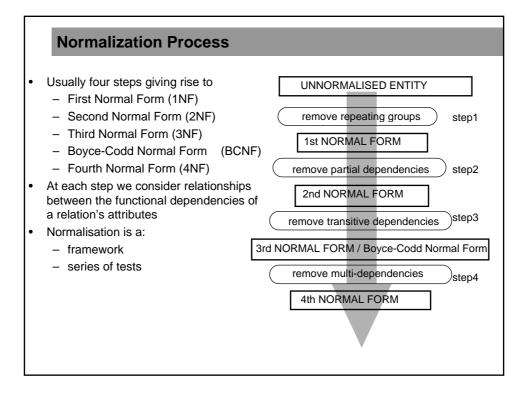

- Conventional files
- Operational databases (also called transactional databases)
- Data warehouses
 - To support data mining
- Personal databases
- Work group databases




Database concepts (Data Administrators)

A **data administrator** is responsible for the data planning, definition, architecture, and management.

One or more **database administrators** are responsible for the database technology, database design and construction, security, backup and recovery, and performance tuning.



Data Normalization (also see Chapter 8)

- Normalization is the process of simplifying the relationship between data elements in a record.
- The purpose of normalization is to produce a stable set of relations.
- To achieve a design that is highly flexible.
- To increase the quality of database design.

Data Normalization

- An logical entity (or physical table) is in **first normal form** if there are no attributes (fields) that can have more than one value for a single instance (record).
- An logical entity (or physical table) is in **second normal form** if it is already in first normal form and if the values of all nonprimary key attributes are dependent on the full primary key.
- An logical entity (or physical table) is in **third normal form** if it is already in second normal form and if the values of all nonprimary key attributes are not dependent on other nonprimary key attributes .

Goals of Database Design

- A database should provide for efficient storage, update, and retrieval of data.
- A database should be reliable—the stored data should have high integrity and promote user trust in that data.
- A database should be adaptable and scalable to new and unforeseen requirements and applications.

Data and Database Models

An **entity relationship diagram** is the logical model of the data requirements.

- Chapter 7

A **database schema** is the physical model or blueprint of the planned implementation of the logical model.

- Also called a physical data model

Sample Physical Data Types				
Logical Data Type to be stored in field)	Physical Data Type Microsoft Access	Physical Data Type Microsoft SQL Server	Physicall Data Type Oracle	
	TEXT	CHAR (size) or character (size)	CHAR (size)	
	ТЕХТ	VARCHAR (max size) or character varying (max size)	VARCHAR (max size)	
	MEMO	TEXT	LONG VARCHAR or LONG VARCHAR2	
	NUMBER	INT (size) or integer or smallinteger or tinuinteger	INTEGER (size) or NUMBER (size)	
	NUMER	DECIMAL (size, decimal places) or NUMERIC (size, decimal places)	DECIMAL (size, decimal places) or NUMERIC (size, decimal places) or NUMBER	

₋ogical Data Type o be stored in field)	Physical Data Type Microsoft Access	Physical Data Type Microsoft SQL Server	Physicall Data Type Oracle
	CURRENCY	MONEY	see decimal number
	DATE/TIME	DATETIME or SMALLDATETIME Depending on precision needed	DATE
	not supported	TIMESTAMP	not supported
	YES/NO	BIT	use CHAR(1) and set a yes or no domain
	OLE OBJECT	IMAGE	LONGRAW
	HYPERLINK	VARBINARY	RAW
	NO	YES	YES

A Method for Database Design

- 1. Review the logical data model.
- 2. Create a table for each entity.
- 3. Create fields for each attribute.
- 4. Create an index for each primary and secondary key.
- 5. Designate foreign keys for relationships.
- 6. Define data types, sizes, null settings, domains, and defaults for each attribute.
- 7. Create or combine tables to implement supertype/ subtype structures.
- 8. Evaluate and specify referential integrity constraints.