
29.11.2001

1

1

Object-Oriented Analysis and Design
with UML

Dr. Uwe Assmann
Research Institute for Integrational Software

Engineering

2

Contents

� Modelling in Analysis und Design
� Functional Model
� Static Model (Structural model, object model)

� Rearranging the static model

� Dynamic Model (Behavioral Model)

3

What is Object-Oriented Modeling?

4

Object-Orientation as a Design
Method

� So far, we had design methods...
� Parnas „Information Hiding“ Modular design
� SA,...

� OO-Development is a Design Method
� Notation (UML)
� Process (different)

� Rational Unified Process
� Use-Case Driven Process with Object-Oriented Analysis

� Heuristics

� OO-Development models

29.11.2001

2

5

Modeling What?

� The world (Analysis)
� WHAT?
� prob lemss (Problem Analysis, Problem Spezifikation)
� Requirements
� Systems of the real world (Simulation)
�Object-Oriented Analysis OOA

� Software systems (Design)
� WHAT? HOW?
� Object-Oriented Design OOD

� then Implementation.....
� WHAT? HOW? BY WHAT? HOW GOOD?
� Object-Oriented implementation OOP

6

Modeling the real world

Car

Wheel
Engine

Side-wheels

...

4

2

1

Analysis vs Design

� Analysis is driven of the problem domain, I.e. the real
world
� Integrates constraints of the problem

� Design is driven by the solution domain
� Integrates constraints of the implementation
� Design should be reuse driven
� Design treats parts of the HOW and BY WHAT, the rest is done

by the implementation
� Good design

� Can be measured (metrics)
� Results of best practices (heuristics, design patterns)
� Imposes an architectural style to a system

8

OO Analysis vs OO Design

� So, OO Development considers both problems and solutions as
composed of objects and their relations

� Both OOA and OOD use OO Modelling
� Different Relations between Analysis and Design

� Analysis == Design in simple cases
� Analysis is Design in reengineering
� Otherwise, Analysis model is evolved to Design model

� In all cases
� Structural model (static model, architectural model)

� Class model
� Object model

� Behavioral model (dynamic model) as a modeling of functional and
behavioral aspects

� state charts, interaction and sequence diagrams
� Functional model

� use cases
� Often, the functional model is considered part of the behavioral model

29.11.2001

3

9

The Classic OO Software Process

Object-Oriented
Analysis OOA
(prob lems und
requirements)

object model

dynamic model

Object-Oriented
Design OOD

object model

dynamic model

Object-Oriented
implementation

OOP

object e

behavior

Structure Behavior

More details, less freedom and variability 10

Object-Oriented Modelling

� Static Model describes Structure
� Objects, their classes, associations (relations), inheritance
� Packaging (subsystems)

� Dynamic Model shows behavior and function
� Use cases describe uses and functions
� Interaction, sequence diagrams show collaborations between

objects
� Statecharts describe how an object reacts on events (messages)

11

Other Aspects

Object-Oriented
Analysis OOA
(problems und
requirements)

object model

dynamic model

Object-Oriented
Design OOD

object model

dynamic model

Object-Oriented
implementation

OOP

object e

behavior

architecture behavior

parallelism

parallelism

parallelism

persistence

persistence

persistence

distribution

distribution

distribution

12

System Design

� Traditional modular decomposition:
� Develop hierarchies
� Decompose system,

data and procedures

� Object-Oriented decomposition:
� Better Modularity by encapsulation

in objects
� Dynamic architectures due to

polymorphism

29.11.2001

4

13

Object-Oriented Modeling with UML

.. In analysis and design

14

OO Modelling

Derive
UseCases

Structural
Model

Dynamic
Model

[Ok]

Noun-Verb
Analysis

15

Functional Model with Use Cases

Often is considered to be part of the dynamic
model

16

Use Case Diagram

� A Use Case Diagram consists of several use cases of a system
� A use case describes an application, a coarse-grain function of a

system, in a certain relation with actors
� A use case contains a scenario sketch

� Pseudocode text which describes the functionality

� Use cases are good for
� Documentation
� Communication with customers and designers
� Are started for the first layout of the structural model
� Sometimes called „stories“ which should fit on one muddy card (XP)

29.11.2001

5

17

Questions for Use Cases

� What is the system/subsystem?
� Who is Actor?

� A user
� An active object
� A person
� A system

� Must be external to the described system

� What are the Applications/Uses?
� What are the relations among Use Cases

� Extends: Extend an existing use case (Inheritance)
� Uses: Reuse of an existing use case (Sharing)

18

Example Service Station

� A Service Station has 4 tasks
[Pfleeger]
� Parking
� Refueling
� Maintenance
� Preventive Maintainance

Parking

Refueling

Maintenance

Preventive
Maintenance

Customer
Manager

19

Questions to help

� What
� Users
� External systems

�

� use
� Need

� the system for which tasks?
� Are tasks or relations to

complex?

20

Refinement Service Station

� We introduce an abstraction of the services

Parking
Refueling

Maintenance

Billing
ServicesCustomer

Manager

Credit Card
System

29.11.2001

6

21

Second Refinement Service Station

Parking
Refueling

Maintenance

Billing
Services

Customer

Manager

Credit Card
System

Printer
System

Accounting
Services

22

Check List Use Case Diagram

� Clarity
� Simplicity
� Completeness
� Match the stories of the customer?
� Missing actors?

23

Static Model (Structural Model,
Object Model)

24

Static Model (Structural Model,
Object Model)

� Simple form of architectural description
� On Classes

� Types
� Sets of objects

� Packages
� Groups of classes
� Subsystems

29.11.2001

7

25

Hierarchical System Decomposition

Car

Spark Plug

DynamoBody Work LightsWheelsEngine

Cylinder

PistonInjection Nozzle Front LightsRear Lights

Can be done with Classes (HOOD, not UML) or Packages (UML)
26

Questions to Find the Static Model

� Which objects do we need?
� May be derived from actors and tasks in use cases

� Which features do they have?
� How can the objects be classified?

� Which classes?
� Which generic classes?

� How are the objects used?
� Relations to others
� Collaborations with others

� Which actions are performed by the objects?
� In which states are the objects and when do they

change them?

27

How to find Objects and Classes

� Design with responsibilities
� Ask the question:

� Which object is responsible for which task?

� Use Noun-Verb-Analysis
� Who is involved?
� What does it do?

� Principle of Responsibility-based OOD:
� Every object is responsible for certain tasks.
� Either it has all the capabilities to do the job itself or
� It cooperates with others to achieve the task

28

Class Name

Responsible for

Cooperation with

Class Responsibility Cards (CRC)

� Fix the role an object has in the system
� Responsibilities
� Cooperation partners

29.11.2001

8

29

Parcel Service

Responsible for

Cooperating with

Accept paket
Deliver paket

Computer Dealer
Student

Computer Dealer

Responsible for

Cooperating with

Accept Order
Deliver paket

Student
Parcel Service

Student

Responsible for

Cooperating with

order
Accept paket

Computer Dealer
Parcel Service

30

Noun-Verb-Analysis

� Analyze Use Case Diagrams or Requirements Specification
� Find objects by

� nouns and subjects
� Find cooperations form

� Subject-object relations
� genitivs

� Find activities from
� Verbs
� Substantivated verbs

� Example
� “When the driver turns on the lights the battery is discharged. When

the engine runs the dynamo recharges the battery...”

31

Our First Class Diagram

Computer Dealer

acceptOrder()
deliverPaket()

Student

Parcel Service

acceptPaket()
deliverPaket()

order()
acceptPaket()

32

Modeling the real solution

Find the right abstractions!

Prototype of a
washing machine

29.11.2001

9

33

The Basic Laws of Misunderstanding

Spoken is not heard
Heard is not listened

Listened is not understood
Understood is not accepted

Accepted is not done

34

Special Male/Female Instance

When did you design
for the last time

the dreams of your wife?

35

Arranging the Structural Model with
Operations on Classes

36

Restructuring of Structural Model

� Factor out commonalities
� into super classes
� into generic classes
� into delegated classes

� Separate variabilities (differences)
� into subclasses
� into Type parameters of generic classes
� in delegierte classes

� Goal: product families (frameworks)
� Their common code works for all products in the family
� realized by polymorphism

� Hollywood Principle: Dont call us, we call you:
� Old code can call new code
� Framework classes can call user-based extensions

29.11.2001

10

37

Abstract classes
� Abstract classes are between classes und types

� At least one method is not implemented, i.e., only an interface
(abstract method, method signature)

� Cannot be instantiated to objects
� But used for inheritance

� Interfaces are fully abstract classes
� Define a type
� Define a service for a class to which they are inherited
� Only consist of method signatures

38

<<abstract class>>
Person

Abstract Classes and Interfaces in
UML

<<interface>>
Person

Eat()
Drink()
Work()
Sleep()

Eat()
Drink()
Work()
Sleep()

<<type>>
Person

Eat()
Drink()
Work()
Sleep()

<<type>> und <<interface>> are stereotypes
These are specific classes, marked for a specific purpose
Stereotypes are used to extend UML

<<implementation class>>
Person

Eat()
Drink()
Work()
Sleep()

39

Single and Multiple Inheritance
� Single Inheritance

� Every class has at most one super class from which it inherits
features common with brothers and sisters

� The inheritance relation is a tree

� Multiple Inheritance
� Several super classes possible
� Inheritance relation is a directed acyclic graph (dag, partial order)
� Class may inherit a feature with the same name twice!

40

Single Inheritance

Person

getName()

Student

drinkBeer()

Professor

getLecture()

Super class S contains common features for all subclasses

29.11.2001

11

41

Feature Resolution in Multiple
Inheritance

B

p()

A

p()

From where is p() inherited?

MRO: Method-Resolution-Order

MRO

42

Dynamic Architecture with
Inheritance and Polymorphism

Caller {
....
if (....) {

SuperClass obj = new B();
} else {

SuperClass obj = new A();
}
obj.p();

}

B

p()

A

p()

Caller
calls

SuperClass

p()

C

p()

Common code in the caller
need not know which
Object of which subtype is

43

Inheritance - Evaluation

+ Reuse easy
+ With few effort new specialized classes can be built
+ Easy Change Propagation

+ Changes impact the whole subclass tree

+ Dynamic architectures with exchange of subclass objects (polymorph.)
– Violation of information hiding

� Subclasses know too much about super classes; invalidating super class
code is easy

– Fragile base class problem: Changes of super classes lead may to
invalidation of sub classes

– Bad readability
– To understand a class, all super classes must be understood

– Inheritance does not ensure substitutability (product families are not
easy)

44

Delegation

f()

C

D

delegated class
(delegatee)

return d.f();

f()

Adapter method f

Delegating class
(delegator)

Has_a

An object may delegate a task to another object

29.11.2001

12

45

Evaluation of Delegation

� Delegation simulate
� Simple and Multiple Inheritance
� Genericity

� Delegation creates „object schizophrenia“
� If delegatee and delegator belong logically together they are

physically different
� What happens if delegatee calls self? Who is meant?

46

What‘s that?

���� type. class Set {
boolean contains(type element);
insert(type element);
remove(type element);

}

appleSet = Set(Apple);
bananaSet = Set(Banana);

47

Generic Classes

� A class template is to be bould by a type parameter
� Notation in Generic Java:

class Set<type> {
boolean contains(type element);
insert(type element);
remove(type element);

}
Set<Apple> appleSet = new Set(Apple);
Set<Banana> bananaSet = appleSet; // WRONG

48

Generic Classes

� For algorithmic schemata
� Commen schema is in the generic class
� Variable behavior is in the type parameter

� Often used for container
� Lists, sets, trees, graphs

� Better type check

29.11.2001

13

49

Generic Classes in UML

T
Set

Set<Integer> Set<Point>

<<bind>>(Point)

� In Generic Java:
public class Set<T> {
...
}

� Binding:
Set<Integer> s;
Set<Point> s;

50

Structure Diagram Service Station

Services

RefuelParking MaintenanceCustomer

Purchase
1..* 0..*

0..*
1

Fuel

0..*
1

Inventory

1..*

1

Part

0..*
1

1

0..*

1..*

51

Objects, Classes, Meta Classes

� Meta data describes data
� A class can be considered as an object of the meta level

because it describes an object on the base level
� A meta class describes a class and is part of the meta

model

<<Metaclass>>
Class

Delegate()
Inherit()
Extend()
Instantiatate()

<<Object>>
Peter:Person

<<Class>>
Person

Person:Class

Eat()
Drink()
Work()
Sleep()

world model Meta model
52

AbstractClass

Meta Model of UML

Interface

GenericClass

The UML meta model describes UML. It contains all concepts of UML
as classes.
Also, stereotypes are described as classes.
Some stereotypes are predefined.
I.e, Interface, AbstractClass, GenericClass, Class are standard classes
in the meta model of UML.
User-defined stereotypes are considered as extensions of the UML
meta model.

Class

Structure Diagram

Method
Attribute

ClassALike

Has_a

Feature

29.11.2001

14

53

Package Diagrams

� Packages are subsystems and allow to structure the
classes.

� Packages represent an element of the modular design in
the object-oriented notation UML

� Package relations should be acyclic
� Similar to the uses relation in layered systems

54

Example Packages Service Station

Services

RefuelParking Maintenance

Customer

Purchase
1..*

0..*

0..*
1

Fuel

0..*
1

Inventory

1..*

1

Part

0..*
1

1

0..*

1..*

Services
Customers

55

However: Coplien’s Law on Software
Structure

Software is always structured in the same
way as the organisation which built it.

56

Dynamic Model (Behavioral
Model)

29.11.2001

15

57

Diagrams for Dynamic Scenarios

� Sequence diagram
� Sequence of messages over time
� Object „life lines“

� Collaboration diagram
� Numbering of messages over time

� Statechart
� Nested finite automata describing states of classes

58

Steps towards the Dynamic Model

� Derive from the use cases
� Sequence diagram
� Cooperation diagram

� Which describe how objects collaborate
� Describe states of classes in statechart

� Derive from sequence and cooperation diagram, as well as use
cases

� Add operations to class diagram

59

Sequence Diagram Service Station

Customer
Service
Station

Credit Card
System Purchase Refuel

refuel()

verify
customer()

[cancel transaction]
pay_cash()

[transaction ok]
newPurchase()

newRefuel()

60

Collaboration diagram

� Forget timeline, layout flexible
� Sketch objects
� Sketch operations as arrows between objects
� Number operations

Customer

Service
Station

Parking
Space

Purchase

Parking

1:parking()

4:newPurchase()
2:nextAvailable() 5:newParking()

3:parkingAt()

29.11.2001

16

61

Statechart

� A finite state machine consists of states and transitions
� In a state, an event occurs and invokes a transition to another

state

� Statecharts are nested finite automata
� States can be refined to subautomata
� Parallel branches can be executed in parallel

62

Example Statechart Service Station

Authorizing

Authorized

Purchased Rejected

Object dies

Object created

63

Activity diagram

� Activities with flow of data between them
� Data flow diagram

� Similar to Petri nets
� Petri nets are even better because they can be analyzed so that

tools can be built for them

� Parallel branches are parallel

� Guard conditions specify branches in control flow
(conditional data flow)

64

Example Activity Diagram Service
Station

verifyStock

verifyFuelStock

orderFuel orderParts

verifyPartsStock
[Ok] [Ok]

Class Inventory

29.11.2001

17

65

Structure
Sequence

Function statechart
s

System

UML is an Aspect-Oriented Language

66

The Dream: A UML Weaver

Use Case

Collaboration
DiagramStructure

Weaver

... Aspect-oriented
Programming is
NOT automatic
With UML!

67

The End

