12/20/01
FulfillNet System Documentation
pg. 1 of 17
[image: image1.png]1, Orders for Customer 2. Orcer nformation | 3 Oraer Detail

Order Creation

4 Invoices, Payments, etc

5 Order Comments

Ordlr Number Customer Number Order Date order Type Order Stetus
112672001 Active =
Original Order D Contnuty Mosel Originl Order Date. Entered By Date Entered
Source & Marketing
Sowce Campaign Promtion Key Code Offer
Phane order

Payment & Shipping Information

Paymert Type. Check Number — Account Number Expiraion MMIYY Name As t Appears On The Credit Card.
= 000
Terms Number of Declnes R
T-pay immediate =] I Info Defut
Save Changes Gancel Eind o Customer Ext Reguest Updte Retuns

Insert Defeult
Crest Card

Mark Order
Shigperd

L=100x]

[image: image2.png]&5 Order Processing for: BRODKE SMITH (301688)

Order #: (301857)

L orers i | 2 vttt | 2o | . s, P, .| 5 e ommonts | |

Order Creation

Ordlr Number Customer Number Order Date order Type Order Stetus
12/02/2000 I7|

Original Order D Contnuty Mosel Originl Order Date. Entered By Date Entered

Source & Marketing

Souwce Campeign Promtion Key Code Offer

Payment Type

Payment & Shipping Information

Check umber

Account Humber

Expiation MY

Name &5 i Appears On The Credt Card

[Savs Changes._ |

cancel

Eind a Customer

Ext

Number of Declines

Rectest Ldte.

Make payment
Infa Defaut

Retuns

Mark Order
Shigperd

FulfillNet System Documentation

IS Department, CPU, Inc.

12/15/01

FulfillNet Overview

This document describes how ASP developers can access the FulfillNet COM DLL component from server-side ASP code to perform the following functions:

· Logging into the system

· Creating and editing Orders

· Creating and editing Customers

· Searching for Customers and Orders

Understanding the FulfillNet Component

The Fulfillnet component is a Microsoft COM DLL that can be installed on a Web server running Internet Information Server (IIS). This component contains a variety of business objects that perform necessary functions such as validating users, retrieving data, validating and saving data, as well as all other system functions.

These are the same business objects that are used in the FulfillPro desktop application, thus providing a single code base for the desktop and the Internet. Although coming from a single code base, the desktop version of the application is distributed as a standard Windows executable that is accessible from desktop workstations whereas the Web version of the application is deployed as a COM DLL accessible from IIS.

[image: image3.png]g for: ELIZABETH noclub MONTEITH (372110) - Order #: (376102)

Terer Ao mn] e DR | Ge | |

Order: 376102 Club:
ay e Descrption Cortinuty [Rush Term[Shi Type] Prce (ea) | SH(ea) | Total | Replace [customzed]Stetus|] - tem Optons|
| 1|oEPBR [orye Sygem B r i T 4 95 895 mel I o
Componerts|
Brcing
address
Eat
Replace.
Delete
Suspend
Gancel Line
Ship-to Address Order Totals
ELIZABETH MONTEITH
26060 MARGUERITE PKIY ffeme Total 29
MISSION VIEJO, CA 92681 Shipping Total 8.9
R
s Shipping Adjustment 000
Misc Adjustment 0.0 Totals
Sales Tax 0.00 Stubrmen)
Order Total 3890
Save Changes Gancel Eind o Customer Ext Reguest Updte Retuns

[image: image4.png]Crec

Card Usage

Customer # Proguct Line First Name LastName

[image: image5.png]Mark Shi ckage

Select Packing Slip Idfs)

Date of Shipment [/ /

Tracking Number

sove coss

[image: image6.png]Order Detai

ing

Order: 376102 Detai
tem Code Descrigtion
[oEPBR Oxvise System + Gt
Quarity Price (each) Discourt (each) Fina Price (each) ttem Total
1 2995 0.00 2995 2995
Shipping (each) Adiionsl (sach) __ RushFees (sach) _ Totel Shipping (sach) | Stipping Total
8.9 000 0.00 8.95 8.9
TaxRate Toxble Amount (each) Tax (each) Soles Tax Total
0.0000 38.90 0.00 0.00
Line Totel
38.90

oK cancel

[image: image7.png]&5 Order Processing for: EMMA MCINTOSH (51) - Order #: (49)

Continuity
’ Status Ofer Next Regeneration Restart Date ==
W Active T (Canceled | [/ ext Orer
Payment Type Check# _ Account # Exp_(MM/YY) Name On Credit Card R
VISA) [10m2 EMMA MCINTOSH Info Defut
Cresten Createay e Eter By Genersied Oders Canceled Orders
ay[tem Description Status Cust5usp | Gen Date | Restart [Freg (daye)|Freg Overrde[ia s
7|(BCT02 T3 (30) Chot Dec Cont wiBoost §5 Canceled ™]] el 0
et
Delee
>
Item Totals Lt |

Al prices, taxes, S/H charges are
subject to change and will be
recalculated at time of Order

(re)generation.

tems Total 000

e Roqist i | ||

Save Changes cancel Eind a Customer

[image: image8.png]

[image: image9.png]P fulfiinet

“The oclient and oproduct objects are stored at the sessior
level when the user irst selects the client and product they.

are working with. See the "Logging In" sequence diagram
for details,

[image: image10.png]asp fufinet Userbior ProductLookun

aetclentobjci(ccienta)

clert deta abiect _

[tl Save Clert Gnect o Session() |

| erequendsta() | B
b Oyl Prosiety :

&

Productinfo

Select a Product
O,

7 Save Product Objectto Session()

i [i

You can instantiate and call the services of these objects from server-side code embedded in ASP pages. As shown in Figure 1, all data access must take place through the FulfillNet Component.

Figure 1 – Server-side code (embedded in ASP pages) calls services of business objects located in FulfillNet.DLL. All data access takes place through the FulfillNet component.
Associated Documentation

In addition to this document, an associated UML model file named FulfillNet.uml, is also supplied which can be viewed by means of the modeling tool Visual UML (www.visualobjectmodelers.com). This model file contains important information (particularly in the UML sequence diagrams) that describes the following for each main system function:

· The objects to instantiate,

· The public methods to call on each object

· The required parameters (and their types) for each method call

· Where applicable, the sequence of method calls to one or more objects.

Return Values from Methods

The majority of methods return values in XML format. This includes data as well as return values and error messages. This ensures that regardless of whether a method returns a value or an error message, the ASP developer can be sure the value returned is a string.

The following types of return values are specified in the UML diagrams:

· XMLLogicalReturnValue – Rather than returning a simple logical value type, methods return an XML string containing the True or False value. For example:

<VFPData>

<retval>TRUE</retval>

</VFPData>

· XMLData – This indicates that a method returns XML data. XML data includes an inline schema providing self-describing information about the associated XML. For example:

<?xml version = "1.0" encoding="Windows-1252" standalone="yes"?>

<VFPData>

<xsd:schema id="VFPData" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="VFPData" msdata:lsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="v_address">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="iaddrid" type="xsd:int"/>

<xsd:element name="icustid" type="xsd:int"/>

<xsd:element name="cmailinfo">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="30"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="caddr1">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="30"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="caddr2">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="30"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="caddr3">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="30"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="ccity">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="30"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="cstate">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="3"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="czip">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="12"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="ccntyfips">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="5"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="ccountry">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="3"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="lenabled" type="xsd:boolean"/>

<xsd:element name="clastname">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="25"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="cfirstname">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="25"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="lgiftaddress" type="xsd:boolean"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

<v_address>

<iaddrid>1</iaddrid>

<icustid>1</icustid>

<cmailinfo/>

<caddr1>5909 EASY ST</caddr1>

<caddr2/>

<caddr3/>

<ccity>SNOWFLAKE</ccity>

<cstate>CA</cstate>

<czip>96097</czip>

<ccntyfips/>

<ccountry>USA</ccountry>

<lenabled>true</lenabled>

<clastname>BELL</clastname>

<cfirstname>ALEXANDER</cfirstname>

<lgiftaddress>false</lgiftaddress>

</v_address>

</VFPData>
Returning XML Error Messages

If a business object method encounters an error during processing, rather than returning the “normal” value, it may return an XML error message. For example:

<VFPData>

<xmlerror>Client was not found</xmlerror>

</VFPData>

In addition to checking for the <xmlerror> element in a method’s return value, you can also easily determine whether a business object encountered an error while performing a service by checking if its lError flag is set to True.

Logging into the System

Each client has a unique ASP start page that is used as a portal for logging into and accessing FulfillNet. The client’s unique id is embedded in the start page to ensure that the correct data is accessed from the Web. For information on logging in, see the sequence diagram “Logging In”.

As shown in Figure 2, the logging in process consists of the following steps:

1. The ASP page passes the embedded client ID to FulfillNet, then retrieves and saves the Client data object as a session variable

2. The user enters their ID and password which are validated by FulfillNet

3. A list of products is displayed from which the user selects a single product

4. The ASP page retrieves and saves the Product data object as a session variable

Figure 2 – UML sequence diagram of the logging in process.

Note that the client and product data objects that are saved as session variables are used in every ASP page on which business objects are instantiated (see the next section).

Instantiating Business Objects from ASP Pages

Before any business objects are instantiated from an ASP page, the FulfillNet object must be instantiated first, and its RegisterObjects() method called (passing the client and product objects stored as session variables).

Figure 3 – The FulfillNet object must be instantiated and the client and product objects registered before any business objects are instantiated on an ASP page.

Creating and Editing Orders

For additional information on creating order headers, see the UML sequence diagram “Order Maintenance”.

User Interface Considerations

1. When creating or editing a new order, the following fields are read-only (see Figure 1):

· Order Number

· Customer Number

· Order Status

· Original Order ID

· Continuity Model

· Original Order Date

· Entered By

· Date Entered

· Offer

· Number of Declines

Figure 1 – Desktop version of new Order Header

2. When editing an order and the order is not updateable (see UML sequence diagram “Order Edit), all fields in the Order Header are read-only (see Figure 2)

Figure 2 – Desktop version of non-updateable Order Header

3. If the Payment Type is not between 1 and 4 (a credit card), the Expiration date and Credit Card Name fields are read-only.

4. If the Payment Type is not 5, 6, or 9 (check, money-order and E-debit), the Check Number field is read-only.

5. If the Payment Type is 5, 6, 7, or 8 (check, money order, cash, prepaid) the Account Number field is read-only.

6. If the Payment Type is changed, the Check Number value should be cleared from the UI.

7. If the Payment Type is changed and it is not a 1, 2, 3, or 4 (credit card), the Expiration date, Account Number and Credit Card Name values should all be cleared from the UI.

8. If the Customer is not tax exempt, the Tax Exempt field should be read-only.

9. If the product line does not allow partial shipments (see the section “Session Variables”), the Partial Ship check box is read-only.

10. If the Account Number field is empty, the “View Credit Card Usage” button is disabled.

11. Set the default value of the Terms combo box to code 1 (which can have a different meaning for each client).

12. If the customer is Inactive, display “Inactive Customer” on the Order Header form.

13. The Payment Types combo box is driven by the Offer ID. On a new record, the Payment Type combo box is not populated until a Key Code is selected. On an edited record, the Payment Type combo is automatically populated based on the current Offer ID. See the UML sequence diagram “Order Maintenance” for details.

14. If the payment type is 8 (prepaid), do not allow the user to select A/R entry.

15. If the status of the order is “Pending”, do not allow the user to select A/R entry.

16. If the user changes the Order Type to Pending, set the Order status display text to “Pending” and the field value to “PN”. If they change the Order type to Active, set the Order Status display text to “Open” and the field value to “OP”.

Selecting Campaign, Promotion and Key Code

1. When a Campaign is selected from the combo box:

· The Promotions combo box should be repopulated based on the selected code

· The Key Codes combo box should be repopulated based on the selected code

2. When a Promotion is selected from the combo box:

· The Key Codes combo box should be repopulated based on the selected code

3. When a Key Code is selected from the combo box:

· The Payment Types combo box should be repopulated based on the selected code

· The Promotions combo box should be repopulated based on the selected code

· The Campaign associated with the selected Key Code should be selected in the Campaign combo box.

· The corresponding Offer ID should be stored in the read-only Offer text box.

See the UML diagram “Order Maintenance” for details

View Credit Card Usage

The “View Credit Card Usage” feature displays all customers for whom there has been any activity against the credit card specified in the current order.

Figure 3 – Credit Card Usage form launched from the Order form

See the UML sequence diagram “View Credit Card Usage” for details

Mark Order Shipped

The actor retrieves the order and selects to Mark Order Shipped. The system displays all packing slips that have been printed but not marked as shipped for the order. The user selects a packing slip and enters the date of shipment and tracking number, then saves the record.

Figure 4 – Mark Order Shipped form

Saving Order Header

· Rather than having the ASP developer muck with the Original Order Date, have the business object handle setting the date when the ASP developer saves the order.

After an Order Header has been saved, a read-only Order Form is displayed. The user selects "Add Item" to add items to the order. The user selects "Edit Order Header" (or something similar) to edit the order header.

Order Item Maintenance

The Windows desktop version of FulfillPro has users entering new order items directly into a grid. In the FulfillNet version, it’s most likely that individual items would be entered separately in an “Order Item Entry” form (while possibly still showing saved items in a table/grid-type format)

· The only updateable fields in the grid shown in Figure 5 are quantity, item, terms, ship type and possibly continuity.

· In addition to the fields that are shown in Figure 5, FulfillNet should have a “discount” field that allows users to enter a discount for each line item.

· Although the Windows desktop application updates prices whenever a related field is changed (Qty, Discount, Terms, Shipping Type, etc.), for optimization purposes, FulfillNet should only calculate prices when the item is saved.

· When displaying the order item entry form, if the current product’s UIForceContinuity flag (see “Session Variables”) is False, display the “Continuity” check box as read-only; otherwise, make it editable.

Figure 5 – Order Item Entry

Item Options

In the Windows Desktop system, an "Item Options" button gives the user the option of displaying Item Codes by current offer or by Product Line. The default is to display the item codes for the current offer.

Components

In the Windows desktop system, a “Components” button

Pricing

In the Windows desktop system, a “Pricing” button launches a form that displays pricing detail for the currently selected item (see Figure 8). Although the desktop version allows the entry of Quantity and Discount, since the main FulfillNet Order Item Entry form allows the entry of both of these values, the Net version of this form can simply be read only for all fields. (see UML sequence diagram “Get Pricing Details”.)

Components

In the Windows Desktop system, a “Components” button launches the Components form which displays a grid that includes all of the components for the highlighted order detail item.

On the Components form there is a “Delete” button that allows the user to delete the currently highlighted item component. (See UML sequence diagram “Order Detail Component Delete” for more details.)

In addition the Components form includes a “replace” button that allows the user to send a replacement for the currently highlighted item component. This button launches the replacement form that gives the choice of reshipping the same component or replacing it with a different component item. The user may also choose to reship a different quantity of the component and/or rush the replacement component. (See UML sequence diagram “Order Detail Component Reshipment” for more details.)

If the user chooses to replace the component with a different component, he is given the option of filling the component selection combo box with components for the BOM, Customizable components for the BOM or all components for the product line. The default is to fill the combo box with the components for the BOM.

Edit Gift

In the Windows Desktop system, and “Edit Gift” button allows the user to designate the highlighted order detail item as a gift and to enter gift text. When packing slips are printed, for a any item marked as a gift the price will not be included and any gift text will be printed.

In the Fulfillnet version, the gift flag and text can be included in the order detail record when the item is saved. (See UML sequence diagram “Order Detail Maintenance”, “Save an Item” for more details.)

Additionally, the user needs the option of updating the gift flag and text for all items in a given order (See UML sequence diagram “Order Update Gift Information” for more details.)

Figure 8 – Order detail pricing form.

Address

Edit Gift

Replace

In the Windows Desktop system, a "Replace" button allows the user to send a replacement shipment for the currently highlighted order detail item. A form is displayed that gives the user the choice of reshipping the same item or replacing it with a different item. (See UML sequence diagram “Order Detail Reship / Replace” for more details.)

Delete

In the Windows Desktop system, a "Delete" button allows the user to delete the currently highlighted order detail item. (See UML sequence diagram "Order Detail Delete" for more details.)

Suspend

In the Windows Desktop system, a "Suspend" toggle button allows the user to suspend, or remove from suspension, the currently highlighted order detail item. (See UML sequence diagram "Order Detail Suspend/Unsuspend" for more details.)

Cancel

In the Windows Desktop system, a "Cancel" button allows the user to cancel the currently highlighted order detail item. (See UML sequence diagram "Order Detail Cancel" for more details.)

Customize

Rush

In the Windows Desktop system, there is a "Rush" button that launches a form that displays the rush options. These options allow the user to add or remove the entire order or just the highlighted order detail item from the rush list, as well as indicate whether or not rush charges should be applied (see UML sequence diagrams "Order Rush" and "Order Detail Rush" for more details).

Totals

In the Windows Desktop system, a "Totals" button launches a form that displays the breakdown of totals fields for the current order and allows the entry of a shipping adjustment, miscellaneous adjustment and miscellaneous reason code. For simplicity, the FulfillNet version may allow the entry of the adjustment fields on the main order entry form (see UML sequence diagram "Set Adjustment Fields").

Shipments

In the Windows Desktop system, a "Shipments" button launches a form that displays, in tree form, the shipments for the current order (see UML sequence diagram "Display Shipments" for more details).

Order Comments Maintenance

The Windows desktop version of FulfillPro allows users to display all comments for an existing order, create comments for an order, edit an existing comment record, and append text to an existing comment. (See UML sequence diagram “Order Comments Maintenance” for details.)

Continuity

When the user saves an order item that has continuity, the system automatically builds the “continuity model”. As shown in Figure 9, a continuity line is automatically created for every order item that has continuity.

Figure 9 -

Session Variables

The following information needs to be gathered and stored in session variables when the user logs in and selects a client and product line (see UML sequence diagram “Logging in” for details):

· User ID

· Client ID

· Product ID

· Product AllowPartialShip (cdeProductInfo.GetPartialShipFlag())

· Product UIForceContinuity flag (cdeProductInfo.GetForceContinuityFlag())

· Product lTaxShipping flag (cdeProductInfo.GetTaxShippingFlag())

Order Maintenance Session Variables

· Order Header ID (uOrdID)

· Order Header Address ID (iAddrID)

· Order Header Default Term ID

· Order detail gift flag

· Order detail gift text

· Order item detail club id (cclubid)

· club rating

FulfillNet.dll

ASP Page

Data

Object A

Object B

Object C

Note: This also applies to the instantiation of the ProductInfo object when logging in. If the ProductInfo object is instantiated on a different ASP page than the FulfillNet object shown in the first part of the diagram, you must reinstantiate the FulfillNet object, call its RegisterObjects() method and pass the client data object as the first parameter and .NULL. as the second parameter.

Copyright December 2001 CPU, Inc. All Rights Reserved

